9 research outputs found

    Multi-View Region Adaptive Multi-temporal DMM and RGB Action Recognition

    Get PDF
    Human action recognition remains an important yet challenging task. This work proposes a novel action recognition system. It uses a novel Multiple View Region Adaptive Multi-resolution in time Depth Motion Map (MV-RAMDMM) formulation combined with appearance information. Multiple stream 3D Convolutional Neural Networks (CNNs) are trained on the different views and time resolutions of the region adaptive Depth Motion Maps. Multiple views are synthesised to enhance the view invariance. The region adaptive weights, based on localised motion, accentuate and differentiate parts of actions possessing faster motion. Dedicated 3D CNN streams for multi-time resolution appearance information (RGB) are also included. These help to identify and differentiate between small object interactions. A pre-trained 3D-CNN is used here with fine-tuning for each stream along with multiple class Support Vector Machines (SVM)s. Average score fusion is used on the output. The developed approach is capable of recognising both human action and human-object interaction. Three public domain datasets including: MSR 3D Action,Northwestern UCLA multi-view actions and MSR 3D daily activity are used to evaluate the proposed solution. The experimental results demonstrate the robustness of this approach compared with state-of-the-art algorithms.Comment: 14 pages, 6 figures, 13 tables. Submitte

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    Probabilistic partial volume modelling of biomedical tomographic image data.

    No full text
    The partial volume effect is an imaging artefact associated with tomographic biomedical imaging data. Three-dimensional volumetric data points (voxels) enclose finite sized regions so that they may contain a mixture of signals which are then known as partial volume voxels. The limited spatial resolution of tomographic biomedical imaging data, due to the complex biomedical image acquisition processes, often results in large numbers of these partial volume voxels. Clinical applications of biomedical imaging data often require accurate estimates of tissues or metabolic activity, where many voxels in the data are partial volume voxels. Therefore accurate modelling of the partial volume effect can be very important for such quantitative applications. The probabilistic models discussed and presented in this thesis provide a generic mathematically consistent framework in which the partial volume effect is modelled. Novel developments include an improved model of an intensity and gradient magnitude feature space to model the PV effect; a novel analytically derived formulation of the ground truth (prior) description of the PV effect; a novel gradient controlled spatially regulated classifier that utilises Markov Chain Monte Carlo simulations; and a fully automatic brain isolation technique that identifies brain voxels in neurological MRI data. Simulated partial volume data and data from anatomical (MRI) and functional (PET) biomedical imaging modalities are utilized to assess the classification performance of the partial volume models. The data sets include: an imaged PET/CT phantom provided by the Royal Marsden Hospital, UK; publicly available simulated MR brain data together with the associated ground truths from the Montreal Neurological Institute, McGill University, Canada; and 20 normal MR data sets from the Center for Morphometric Analysis at Massachusetts General Hospital, USA. The performance of the developed classifiers were found to be competitive and in some cases superior to existing published quantitative estimation techniques

    Fully automatic skull stripping of routine clinical neurological NMR data

    No full text

    Developmental Changes in Organization of Structural Brain Networks

    No full text
    corecore